Fall 2006
Fall 2006 1 Mech
Fall 2006 2 Mech
Fall 2006 3 EM
Fall 2006 4 EM
Fall 2006 5 QM
Fall 2006 6 QM
Fall 2006 7 SM
Fall 2006 8 SM
Fall 2006 9 Math
Fall 2006 10 Misc
Fall 2006 11 Mech
Fall 2006 12 Mech
Fall 2006 13 EM
Fall 2006 14 EM
Fall 2006 15 QM
Fall 2006 16 QM
Fall 2006 17 SM
Fall 2006 18 SM
Fall 2006 19 Math
Fall 2006 20 Math
Two electrons each of mass m are placed in a one-dimensional box of width L placed in an external magnetic field B in the z direction. The interaction Hamiltonian of the electrons is
(1)where the magnetic moment is $\bold{\mu_{1,2}} = - \mu_0 \bold{S_{1,2}}$, where $\mu_0$ is a constant.
(a) Find the possible energies of the system, and the quantum numbers (i.e. spatial and spin quantum numbers) and multiplicities of the allowed states.
(b) Write the energy as a multiple of $\hbar^2 / (2 m L^2)$ in terms of the dimensionless parameters $a = m L^2 A$ and $b= \mu_0 B m L^2 / \hbar$.
(c) Find the ground state quantum numbers as a function of a and b. Give your answer by marking the quantum numbers in the a - b plane.
***
Answer
***
Post preview:
Close preview