Fall 2006 5 Qm
Fall 2006
Fall 2006 1 Mech
Fall 2006 2 Mech
Fall 2006 3 EM
Fall 2006 4 EM
Fall 2006 5 QM
Fall 2006 6 QM
Fall 2006 7 SM
Fall 2006 8 SM
Fall 2006 9 Math
Fall 2006 10 Misc
Fall 2006 11 Mech
Fall 2006 12 Mech
Fall 2006 13 EM
Fall 2006 14 EM
Fall 2006 15 QM
Fall 2006 16 QM
Fall 2006 17 SM
Fall 2006 18 SM
Fall 2006 19 Math
Fall 2006 20 Math
A particle with mass m and energy E moves in the one-dimensional potential V(x) given by V(x)=0 for x < 0 and V(x)=$-V_0$ for $x \ge 0$ where $V_0 \ge 0$.
(a) Solve the time independent Schödinger equation for the wavefunction $\psi (x)$ at all values of x with the boundary condition that the incident flux is from $x = - \infty$.
(b) Compute the transmission and reflection probabilities from your results in (a).
(c) What are the transmission and reflection probabilities in the limits $V_0 \rightarrow 0$ and $V_0 \rightarrow \infty$?
***
Answer
***
Post preview:
Close preview