Fall 2006 6 Qm
Fall 2006
Fall 2006 1 Mech
Fall 2006 2 Mech
Fall 2006 3 EM
Fall 2006 4 EM
Fall 2006 5 QM
Fall 2006 6 QM
Fall 2006 7 SM
Fall 2006 8 SM
Fall 2006 9 Math
Fall 2006 10 Misc
Fall 2006 11 Mech
Fall 2006 12 Mech
Fall 2006 13 EM
Fall 2006 14 EM
Fall 2006 15 QM
Fall 2006 16 QM
Fall 2006 17 SM
Fall 2006 18 SM
Fall 2006 19 Math
Fall 2006 20 Math
A one dimensional harmonic oscillator has momentum p, mass m, and angular frequency $\omega$. It is subject to a perturbation with a potential energy $U=\lambda x^4$ where $\lambda$ is suitably small so that perturbation theory is applicable.
(a) Derive the expressions for $a$ and $a^{\dagger}$ in terms of x and p using the fact that they satisfy $\left [ a,a^{\dagger} \right ]=1,\;H=\hbar \omega (a^{\dagger} a + 1/2)$.
(b) Calculate the energy shift $\Delta E_n$ of the state $|n \rangle$ due to the perturbation to the first order in $\lambda$, using creation and annihilation operators.
***
Answer
***
Post preview:
Close preview