Qm Es

How I memorized a few things…

(1)
\begin{eqnarray} Y_{0,0} &=& \left ( \frac{1}{4\pi} \right ) ^ {1/2}\\ Y_{1,-1}&=& \left ( \frac{1}{4\pi} \right ) ^ {1/2}\sqrt{\frac{1}{2}}\sqrt{3}\sin{\theta}\math{e}^{-\math{i}\phi}\\ Y_{1,0}&=& \left ( \frac{1}{4\pi} \right ) ^ {1/2}\sqrt{3}\cos{\theta}\\ Y_{1,1}&=& - \left ( \frac{1}{4\pi} \right ) ^ {1/2}\sqrt{\frac{1}{2}}\sqrt{3}\sin{\theta}\math{e}^{\math{i}\phi}\\ Y_{2,-2}&=& \left ( \frac{1}{4\pi} \right ) ^ {1/2}\frac{1}{2}\sqrt{\frac{15}{2}}\sin^2{\theta}\math{e}^{-2\math{i}\phi}\\ Y_{2,-1}&=& \left ( \frac{1}{4\pi} \right ) ^ {1/2}\sqrt{\frac{15}{2}}\sin{\theta}\cos{\theta}\math{e}^{-\math{i}\phi}\\ Y_{2,0}&=& \left ( \frac{1}{4\pi} \right ) ^ {1/2}\frac{1}{2}\sqrt{\frac{5}{2}}\left ( 3 \cos{\theta}^2 -1 \right )\\ Y_{2,1}&=& - \left ( \frac{1}{4\pi} \right ) ^ {1/2}\sqrt{\frac{15}{2}}\sin{\theta}\cos{\theta}\math{e}^{\math{i}\phi}\\ Y_{2,2}&=& \left ( \frac{1}{4\pi} \right ) ^ {1/2}\frac{1}{2}\sqrt{\frac{15}{2}}\sin^2{\theta}\math{e}^{2\math{i}\phi}\\ \end{eqnarray}
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-Share Alike 2.5 License.